Composite nanoparticles consisting of magnesium, nickel, and carbon atoms are studied both theoretically and experimentally. The calculations performed in terms of the density functional theory show that the jump frequency of hydrogen atoms in nickel-containing magnesium hydride increases substantially near impurity nickel atoms; as a result, the rate of hydrogen absorption by magnesium also increases. Nickel on the magnesium surface is shown to be absorbed via an island growth mechanism. Composite Mg-C, Ni-C, and Mg-Ni-C powders are produced by plasmachemical synthesis in a carbon-helium plasma stream. Hydrogen is introduced into a chamber during synthesis. It is found by X-ray photoelectron spectroscopy and thermogravimetric analysis that, among these three composites, only Mg-Ni-C contains magnesium fixed in the MgH2 compound. The process of such “ultrarapid” hydrogenation of magnesium, which occurs in the time of formation of composite nanoparticles, can be explained by the catalytic action of nickel, which is enhanced by a high temperature. Scanning electron microscopy micrographs demonstrate the dynamics of the dehydrogenation of Mg-Ni-C composite nanoparticles in heating by an electron beam.
Read full abstract