ABSTRACT Despite advances in the identification and characterization of endophytic bacteria in various plant species worldwide, little is known about such microorganisms in plants from the Amazon region. Previous studies reported that Piper tuberculatum endophytic Pseudomonas (isolates Pt12 and Pt13, identified as Pseudomonas putida and Pseudomonas sp., respectively) were able to inhibit the in vitro growth of Fusarium solani f. sp. piperis, which causes root rot in black pepper (Piper nigrum), and that Pt13 promoted the growth of P. nigrum. Therefore, the aim here was to characterize these bacteria regarding their ability to produce plant growth-promoting substances [siderophores, indol acetic acid (IAA) and soluble phosphate]. Chrome azurol S assays were performed for the detection of siderophores. For qualitative and quantitative assays of IAA production and phosphate solubilization, Salkowski´s reagent and NBRIP medium with molybdenum blue reagent, respectively, were used. Results revealed that Pt12 and Pt13 were able to synthesize IAA, mainly under a high concentration of L-tryptophan, indicating that they are IAA-producing bacteria, probably through a tryptophan-dependent biosynthesis pathway. The presence of P. nigrum extract positively influenced the IAA production by Pt12 and Pt13, with highest values of 125 and 90 µg mL-1, respectively. In addition, Pt12 was positive for the production of siderophores and produced 56.56 µg mL-1 of soluble phosphate. In contrast, Pt13 showed no ability to produce siderophores or to solubilize phosphate. Besides their potential in controlling plant diseases, Pt12 and Pt13 have potential as biofertilizers, favoring sustainable agriculture.