Abstract
It is well known that a gram of soil contains thousands of individual microbial taxa including bacteria, fungi, protists, oomycetes and viruses. Many of them play the main role in ecosystem functioning determining soil fertility and provide plant growth promotion and disease suppression, (van der Heijden et al., 2008; Glick, 2012; Serna-Chavez et al., 2013; Maron et al., 2018). However, after many years of chemical fertilization, soils lost their natural fertility, plant diversity and microbial richness (Huang et al., 2019). In addition, an increasing number of stress factors are observed such as salinity, alkalinity/acidity, contamination, nutrient deficiency or overload of chemical fertilizers, drought, soil erosion due to climate change, and various biotic factors (Fitzpatrick et al., 2019). The use of plant beneficial microorganisms (PBM) to mitigate these 0problems in cultivated crop production is now a common practice particularly in the modern, sustainable agriculture and in the context of increasing world population and environmental and climate concerns (Shilev et al., 2019). During the last 20–30 years, a large number of microorganisms have been isolated, characterized and tested as biofertilizers and biocontrol agents in controlled and natural conditions. The results confirmed the beneficial effect of the selected microorganisms on plant growth and health, enhancing nutrient content and improving soil properties. Now, the emphasis of the scientific activity in the field of microbial inoculants is on developing environmentally friendly and efficient microbial formulations and analyse how the introduced microorganisms affect microbial community, diversity, and the specific plant–microorganisms interactions, which determine the plant holobiome functioning (Berg et al., 2017). Therefore, at this moment, at least two major lines of research can be distinguished: the first one deals with holobiome/hologenome studies including molecular mechanisms and genetic regulation (and epigenetic mechanisms) of beneficial microbiota (Corbin et al., 2020) and, another important line of research on the process of establishing a plant beneficial microbiome includes development of efficient single or multiple microbial inoculants. A combination of pro- and postbiotics could be applied to manage and stimulate the existing beneficial microbiome.
Highlights
It is well known that a gram of soil contains thousands of individual microbial taxa including bacteria, fungi, protists, oomycetes and viruses
The results confirmed the beneficial effect of the selected microorganisms on plant growth and health, enhancing nutrient content and improving soil properties
Based on the above considerations, three strategies for microbial management of soil–plant systems could be selected based on prebiotics, probiotics, and postbiotics (Figure 1)
Summary
It is well known that a gram of soil contains thousands of individual microbial taxa including bacteria, fungi, protists, oomycetes and viruses. The emphasis of the scientific activity in the field of microbial inoculants is on developing environmentally friendly and efficient microbial formulations and analyse how the introduced microorganisms affect microbial community, diversity, and the specific plant– microorganisms interactions, which determine the plant holobiome functioning (Berg et al, 2017) At this moment, at least two major lines of research can be distinguished: the first one deals with holobiome/hologenome studies including molecular mechanisms and genetic regulation (and epigenetic mechanisms) of beneficial microbiota (Corbin et al, 2020) and, another important line of research on the process of establishing a plant beneficial microbiome includes development of efficient single or multiple microbial inoculants. A combination of pro- and postbiotics could be applied to manage and stimulate the existing beneficial microbiome
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have