Leaching of per- and polyfluoroalkyl substances (PFAS) during the post-consumer disposal of food contact materials (FCMs) poses a potential environmental threat but has seldom been evaluated. This study characterized the leaching behavior of PFAS and unidentified precursors from six common FCMs and assessed the impact of environmental conditions on PFAS release during disposal. The total concentration of 21 PFAS ranged from 3.2 to 377 ng/g in FCMs, with PFAS leachability into water varying between 1.1–42.8 %. Increasing temperature promoted PFAS leaching, with leached nine primary PFAS (∑9PFAS) reaching 46.3, 70.4, and 102 ng/L at 35, 45, and 55 ℃, respectively. Thermodynamic analysis (∆G>0, ∆H>0, and ∆S<0) indicated hydrophobic interactions control PFAS leaching. The presence of dissolved organic matter in synthetic leachate increased the leached ∑9PFAS from 47.1 to 103 ng/L but decreased PFBS, PFOS, and 6:2 FTS leaching. The total release of seven perfluorocarboxylic acids (∑7PFCAs) from takeaway food packaging waste was estimated to be 0.3–8.2 kg/y to landfill leachate and 0.6–15.4 kg/y to incineration plant leachate, contributing 0.2–4.8 % and 0.1–3.2 % of total ∑7PFCAs in each leachate type. While the study presents a refined methodology for estimating PFAS release during disposal, future research is needed on the indirect contribution from precursors.