Abstract

Priming effect (PE) is recognized as an important potential mechanism for dissolved organic matter (DOM) degradation in aquatic ecosystems. However, the priming effects (PEs) of various priming substances on the degradation of DOM pools in urban lakes along diverse trophic states remain unknown. To address this knowledge gap, the PEs and drivers of glucose and plant leachate of lake water with three trophic states were investigated. We reveal differences in the bioavailability of DOM in lake water, glucose, and plant leachate. The PE of the same priming substance was significantly higher in highly-eutrophic lake water than in mesotrophic lake. The priming intensity induced by glucose was significantly higher when compared to plant leachate. Regarding the addition of glucose, humic-like components (C1 and C3) showed slight PE, while the tyrosine-like component C2 showed negative PE. However, the positive PEs were observed on three components after adding plant leachate. The driver of PE by glucose shifted from nutrients to DOM components with increasing trophic levels. The PEs induced by plant leachate were affected by nutrients, chlorophyll-a (Chl-a), water chemistry, and DOM components in lightly/moderately-eutrophic lake water. This study revealed the intensities, directions, and drivers of PEs, providing essential insights into uncovering the DOM biogeochemical process in urban lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call