ABSTRACT The increasing demand for natural fiber-reinforced composites has opened up the market for inexpensive, lightweight, bio-renewable, and environment-friendly plant fibers. The chemical treatments on fiber lead to the reduction of lignin and hemicellulose contents which helps in better adhesion with the matrix. The objective of this work is to do various chemical treatments on Cissus quadrangularis Stem Fiber (CQSF) and perform its characterization. The natural fibers are first extracted from the Cissus quadrangularis stem using the retting process. The fibers are then chemically treated with magnesium carbonate (MgCO3), sodium hydroxide (NaOH), sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and calcium hydroxide (Ca(OH)2). The characterization of single fibers is investigated by single-fiber tensile test, chemical composition, thermogravimetric analysis, and field emission scanning electron microscope. Characterization results show that the MgCO3-treated CQSF has improved mechanical and thermal properties. Thus, MgCO3-treated CQSF is suggested for biocomposite preparation due to its promising mechanical properties and thermal properties.