The introduction of exogenous particles into plants has promising applications in agriculture and biotechnology. Nanoparticles can be transported into plants through foliar application or root uptake. However, both methods have limitations in terms of the size of the particles (<40 nm) that can be transported due to the barriers of the cell wall and cuticle. In the present study, we proposed a novel method to deliver particles of up to 110 nm into plants by cutting the stem of tomato seedlings. We demonstrated for the first time, using water-insoluble silica colloids, that not only nanoparticles but also submicron particles can be transported toward the leaves when the plant stem is used as the entry point of particles. Thirty-five-day-old tomato seedlings were used as the target plants. When the cut stem seedlings were immersed in the colloidal particle suspension for up to 24 h, significant particle accumulation was observed in the nodes and leaves. The relatively low particle concentrations (10 mg/L) allowed effective transport throughout the plants. Silica particles with average diameters of 10 nm and 110 nm were both well transported and moved through the stem. Even after the particles entered the plant, adventitious roots were formed, resulting in the formation of whole plants with roots, stems, and leaves. This method can be applied not only to tomatoes but also to other food crops for various applications in plant biotechnology.