In the present work, the load-bearing role of the facet joints in a lumbar I 2–3 segment is quantitatively determined by means of a three dimensional nonlinear finite element program. The analysis accounts for both material and geometric nonlinearities and treats the facet articulation as a nonlinear moving contact problem. The disc nucleus is considered as an inviscid incompressible fluid and the annulus as a composite of collagenous fibres embedded in a matrix of ground substance. The spinal ligaments are modelled as a collection of nonlinear axial elements. The loadings consist of axial compression and sagittal plane shears and bending moments, acting alone or combined. The results show that in pure compression, the external axial force is transmitted primarily by the intervertebral disc. The facet joints carry only a small percentage of the force. However, the facet joints carry large forces in extension, whereas in small flexion they carry none. Addition of compression tends to increase these contact forces in extension while it has no effect on them in flexion. In extension, the forces on the facet joints are transmitted by both the articular surfaces and the capsular ligaments. Although in small flexion the facets carry no load, large contact forces are predicted to develop as the segment is flexed beyond 7–8°. These forces are of the same magnitude as those computed under large extension rotation and are oriented nearly in the horizontal plane with negligible component in the axial direction. The horizontal components of the contact forces generated during articulation are often larger than the axial components which directly resist the applied compressive force. The axial components of the contact forces, therefore, grossly underestimate the total forces acting on the facets. The transfer of forces from one facet to the adjacent one occurs through distinct areas in flexion and in extension loadings. That is, on the superior articular surface, the contact area shifts from the upper tip in large flexion to the lower margin in extension. On the inferior articular surface, the contact area shifts from the upper and central regions in large flexion to the lower tip in extension.
Read full abstract