Emerging wearable devices are very attractive and promising in biomedical and healthcare fields because of their biocompatibility for monitoring in situ biomarker-associated signals and external stimulus. Many such devices or systems demand microscale sensors fabricated on curved and flexible hydrogel substrates. However, fabrication of microstructures on such substrates is still challenging because the traditional planar lithography process is not compatible with curved, flexible, and hydrated substrates. Here, we present a shadow-mask-assisted deposition process capable of directly generating metallic microstructures on the curved hydrogel substrate, specifically the contact lens, one of the most popular hydrogel substrates for wearable biomedical applications. In this process, the curved hydrogel substrate is temporarily flattened on a planar surface and metal features are deposited on this substrate through a shadow mask. To achieve a high patterning fidelity, we have experimentally and theoretically investigated various types of distortion due to wrinkles on 3D-printed sample holders, geometric distortion of the substrate due to the flattening process, and volume change of the hydrogel material during the dehydration and hydration processes of the contact lens. Using this method, we have demonstrated fabrication of various titanium pattern arrays on contact lenses with high fidelity and yield.