Abstract

We study scaling limits of a family of planar random growth processes in which clusters grow by the successive aggregation of small particles. In these models, clusters are encoded as a composition of conformal maps and the location of each successive particle is distributed according to the density of harmonic measure on the cluster boundary, raised to some power. We show that, when this power lies within a particular range, the macroscopic shape of the cluster converges to a disk, but that as the power approaches the edge of this range the fluctuations approach a critical point, which is a limit of stability. The methodology developed in this paper provides a blueprint for analysing more general random growth models, such as the Hastings-Levitov family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.