Precise control of phase structure transition for the synthesis of multi-dimensional soft materials is a fascinating target in amphiphilic molecule self-assembly. Here, we demonstrate a spontaneous formation of a closely packed lamellar phase consisting of uni- and multi-lamellar vesicles through the incorporation of a small amount of an extractant, di(2-ethylhexyl)phosphoric acid (DEHPA), into the highly swollen, planar lamellar phase of a non-ionic tetraethylene glycol monododecyl ether (C12EO4) surfactant in water. It is figured out that the introduction of negative membrane charges results in the electrostatic repulsion among the lamellae, which suppresses the Helfrich undulation and induces a phase structure transition from planar lamellae to closely packed vesicles. Our results provide important insight into amphiphilic molecule self-assembly, where additives and pH can satisfy the opportunities for the precise tuning of the lamellar structures, which makes a way for the development of lamellar soft materials.
Read full abstract