Current hypotheses regarding mechanotransduction rely upon motion of the stereocilia relative to the apical surface of the hair cell. The viscosity of the surrounding endolymphatic fluid will, however, attenuate stereocilia motion at higher frequencies of excitation. To investigate stereocilia motion for physiologically reasonable deflections and frequencies of excitation, the fluid-structure interaction of the stereocilia bundle is considered analytically. Solutions in the frequency domain are determined for stereocilia bundle dimensions at several locations along the cochlear duct of the chinchilla. Results indicate that motion of the stereocilia is analogous to that of a low-pass filter. Comparison of these solutions with Greenwood's frequency-place map demonstrates that motion of the stereocilia bundle exists without substantial attenuation at least up to frequencies appropriate for the location of the corresponding hair cell along the cochlear duct. The variation in stereocilia morphology within the mammalian cochlea thus appears to provide a collection of low-pass mechanoreceptors, arranged in order of increasing corner frequency across the auditory spectrum.