The nylon 6/PLA blend nanofibers have been prepared for the first time by needleless electrospinning. The formic acid (FA) was found to be the co-solvent with dichloromethane (DCM) at a ratio of 3:1 for dissolving nylon 6/PLA blend. The nylon 6/PLA blend solutions in various ratios of PLA (8, 10, and 12 wt%) were studied to prepare nanofiber at the applied voltage range of 25 kV to 30 kV. The morphology images of the fibers were shown by scanning electron microscope (SEM). It was found that the average diameter of the nylon 6/PLA blend fibers became smaller as the applied voltage increased from 25 kV to 30 kV and as the PLA content increased from 8 to 12 wt%. The morphology of the fibers became finer with increasing the PLA content. The morphology of the nylon 6:PLA (20:10) nanofibers presented a smooth surface without the formation of beads with an average diameter of 157 nm at the applied voltage of 25 kV. The high PLA content (12 wt%) at a low applied voltage (25 kV) exhibited the bead formation. In contrast, the bead was formed at the medium PLA concentration (10 wt%) at the applied voltage of 30 kV. Therefore, the high PLA content (12 wt%) at a high applied voltage (30 kV) presented a ribbon-like nanofiber of nylon 6/PLA without bead formation. The particle size distribution obtained from SEM images of the nylon 6/PLA nanofiber was narrow at low PLA contents and became broader at higher PLA concentrations.
Read full abstract