Abstract

Designing biodegradable microparticles with finely controlled release properties for tissue engineering systems remains a significant scientific challenge. This study introduces a novel approach by fabricating urethane-linked PLA/PGS microparticles loaded with magnesium peroxide. The microparticles offer potential applications in bone tissue engineering due to their ability to provide a controlled release of oxygen and magnesium ions while maintaining physiological pH. The PGS pre-polymer was synthesized via polycondensation and characterized using FTIR, 1H NMR, and GPC. Microparticle morphology transformed from smooth to raspberry-like upon incorporation of PGS, as observed by SEM. Microparticle size was tuned by varying PGS and PLA concentrations. FTIR analysis confirmed the successful formation of urethane links within the microparticles. MgO2-loaded PLA/PGS microparticles exhibited sustained release of dissolved oxygen and magnesium ions for 21 days while maintaining physiological pH better than PLA microparticles. Cell viability assays confirmed microparticle cytocompatibility, and ALP and Alizarin red assays demonstrated their ability to induce osteogenic differentiation. These findings highlight the potential of pH-controlled MgO2-loaded microparticles as an effective system for bone tissue engineering. In conclusion, this study presents a novel approach to designing biodegradable microparticles with adjustable release properties for bone tissue engineering. The urethane-based MgO2-loaded microparticles provide controlled release of oxygen and magnesium ions and regulate the environment’s pH, making them a promising system for bone tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call