The infrared (IR) receptors in the pit organ of crotaline snakes are very sensitive to temperature. The vasculature of the pit organs, which is located in close proximity to IR-sensitive terminal nerve masses (IR receptors), is finer, flatter, and more convoluted than that of other sensory organs. Using extracellular recording in vivo from IR-sensitive primary afferent trigeminal ganglion (TG) neurons of the crotaline snake Trimeresurus flavoviridis, I studied the response to IR warming (24–25 °C) and to various chemicals: an exogenous vasoactive substance nitric oxide donor (sodium nitroprusside, SNP), endothelin-1 (ET-1), a transient receptor potential vanilloid (TRPV)1 agonist (capsaicin, CAP) and antagonist (capsazepine, CZP), and Ruthenium Red (RR), an antagonist of the TRPV family. IR-sensitive primary afferent TG neurons display regular background firing at 10–25 impulses per second at 24–25 °C. At this temperature, Ruthenium Red and endothelin-1 clearly suppressed the frequency of background firing, while sodium nitroprusside injected into the bloodstream significantly increased the frequency of discharges ( P<0.01) and caused regular bursts of firing in IR-sensitive TG neurons. By contrast, capsaicin and capsazepine had no effect on the infrared responses. The possibility that these opposite responses result from their vasoactive effects on the unusual pit vasculature or from their chemical effects on the thermoreceptors of IR-sensitive nerve terminals in the pit organ, like those of the TRPV family, is discussed.
Read full abstract