Abstract
Two types of odontodes, or dermal teeth, occur in the neotropical Andean astroblepid catfishes. Both odontode types conform in structure to dermal teeth of gnathostomes in having dentine surrounding a central pulp cavity covered by a superficial layer of enameloid, but differ from one another in terms of attachment and association with other epidermis features. Type I odontodes in astroblepids, also found in all representatives of the superfamily Loricarioidea, are larger (40-50 microm base diameter), generally conical and sharply pointed, occur on the fin rays, and are associated with dermal bone. Type I odontodes attach to an elevated pediment of dermal bone of the fin lepidotrich, and to dermal bone generally in loricarioids, via a ring of connective tissue. Type II odontodes of astroblepids are smaller (15-20 microm base diameter) and blunt, occur in the skin of the head, maxillary barbels, nasal flap, and lip margins, and are not associated with dermal bone. Observations based on histology and scanning electron microscopy indicate that Type II odontodes are associated with other epithelial structures to form a putative mechanosensory organ. The odontode base lies deep in the dermis. The shaft is surrounded by a dense patch of microvillous epithelium and projects from within a pit formed by an elevated ring of laminar epithelial cells bearing several columnar, knob-like putative mechanosensory structures. Type II odontode organs have thus far been observed in only three astroblepid species, Astroblepus longifilis, A. chotae, A. rosei, where they occur in especially dense arrays on the maxillary barbels, surrounded by discrete patches of microvilli and separate mechanoreceptors. Type II odontode organs are less dense elsewhere on the body, but also occur in the skin of the snout, head, and lips. Typical taste buds are absent from the barbels of these species, but present in other astroblepids. The presence of Type II odontodes and their association with specialized epithelial pit organs are unique to astroblepids among siluriforms and may be potentially important adaptations to life in torrential mountain streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.