Powered hand tools have the potential to produce reaction forces that may be associated with upper extremity musculoskeletal disorders. This study examined and compared the kinetic and physiological impacts on operator upper extremities between the fastening and unfastening operations. Thirty-two healthy, right-handed male operators used four tools on two joint simulators at different working heights and distances in the laboratory. Three work configurations were simulated: pistol grip tools on a vertical and horizontal surface, and right angle tools on a horizontal surface. Grip force was measured on an instrumented handle attached to each tool. Muscle activity was monitored at the wrist flexor and extensor and the upper trapezius of the right arm. Paired comparisons showed that when pistol grip tools were used, the peak torque to unfasten a joint (3.7 Nm) was significantly less than to fasten the same joint (5.7 Nm). However, the exposure time was longer for unfastening cycles (98 ms more on the horizontal surface, and 107 ms more on the vertical surface). The average grip force scaled to corresponding peak tool torque revealed that the effort to react against torque was greater in unfastening cycles than in fastening cycles for all work configurations. It also showed that as a proximal stabilizer, the upper trapezius muscle had a greater activity in unfastening cycles. The kinetic and physiological responses demonstrated that unfastening fasteners, which has been neglected in the literature, have the potential to increase risk for musculoskeletal disorders and should be considered in ergonomics assessment in the workplace.
Read full abstract