Gene editing strategies to safely and robustly modify the Alzheimer's disease-associated APOE4 isoform are still lacking. Prime editing (PE) enables the precise introduction of genetic variants with minimal unintended editing and without donor templates. However, it requires optimization for each target site and has not yet been applied to APOE4 gene editing. Here, we screened PE guide RNA (pegRNA) parameters and PE systems for introducing the APOE4 variant and applied the optimized PE strategy to generate disease-relevant human induced pluripotent stem cell models. We show that introducing a single-nucleotide difference required for APOE4 correction inhibits PE activity. To advance efficient and robust genome engineering of precise genetic variants, we further present a reliable PE enrichment strategy based on diphtheria toxin co-selection. Our work provides an optimized and reproducible genome engineering pipeline to generate APOE4 disease models and outlines novel strategies to accelerate genome editing in cellular disease model generation.
Read full abstract