In ultrasonic inspection of pipes of various diameters using antenna arrays and arrays, two technologies of reflector image reconstruction are widely used: antenna array focusing technology (PAUT) and digital aperture focusing (DAF) technology. If the tube diameter is larger than a hundred wavelengths, the DAF method can be used to reconstruct the reflector image by taking into account several reflections from the boundaries, assuming that the object of inspection is flat. In this case, the errors in the formation of DAF-image of reflectors will be insignificant. However, if the pipe diameter is several tens of wavelengths and the wall thickness is about half of the pipe diameter, then in this case the geometry of the inspection object must be taken into account to obtain a high-quality DAF-image of the reflectors. The paper considers the peculiarities of image formation at registration of echo signals by an antenna array or matrix, when scanning both on the external and internal surfaces of the object of control. In numerical and modeling experiments it is shown that both antenna array and antenna array can be used to obtain high-quality DAF-image of reflectors when scanning along the outer surface of a thick-walled pipe of small diameter. This is due to the presence of the effect of physical focusing of the ultrasonic field. But when scanning along the inner surface of a thick-walled tube of small diameter, because of the defocusing effect, it is necessary to register echoes with an antenna array to restore the image of reflectors.