Abstract
ABSTRACT In sewer networks, failure prediction plays a significant role in operation and maintenance plans of wastewater utilities. This study aims to determine the effective variables on the failures by using feature selection algorithms (FS) and achieve maximum model accuracy with minimum variables. Also, four scenarios based on the suggested FS algorithms were developed. In these scenarios, the best prediction models were investigated using machine learning classifiers (ML) such as neural network classifier (NNC), gradient boosting machine (GBM), random forest (FR), and hybrid model (HM). The classification performance of ML models was evaluated using accuracy, precision, F1_score, and receiver operating characteristics (ROC) curve. The model accuracies ranging from 0.99 for accuracy to 1 for the ROC curve were achieved through ML algorithms. In conclusion, the ML algorithms suggested in this study may be a decision support tool for wastewater utilities in prioritizing the replacement, maintenance, and inspection of sewer pipes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.