The effect of pine needle extract from Cedrus deodara (PNE) on the quality of salted meat was reported, and its action mechanism was further investigated. With the treatment of PNE, the physicochemical properties of salted meat were improved. The peroxide value decreased from 16.18 to 6.78mmol O2 /kg, while the thiobarbituric acid value decreased from 0.79 to 0.40mg MDA/kg. Moreover, the salted meat with PNE also had the better texture, color, and volatile compositions. The 0.2% PNE group showed the highest ΔE value (63.16± 0.56), hardness (813.5± 48.7g), and volatility (45.86± 0.39), while the control group showed the lowest ΔE value (43.92± 2.13), hardness (515.8± 17.3g) and volatility (29.97± 0.56). In addition, with the analysis of fluorescence and circular dichroism spectroscopy, the spatial structures of myofibrillar protein (MP) in salted meat were obviously changed by PNE. Meanwhile, methylconiferin, 1-O-feruloyl-β-D-glucose, nortrachelogenin, secoxyloganin, 1-O-(4-coumaroyl)-β-D-glucose and pelargonidin-3-O-glucoside were identified from PNE. Furthermore, according to the analysis of molecular docking, hydrogen bond, hydrophobic force, and electrostatic force were obtained as the main molecular forces between MP and the phenolic compounds of PNE, while arginine, glutamic acid, and glycine residues were the main binding sites. All results suggested that PNE might be a potential candidate to improve the quality of salted meat in the food industry. PRACTICAL APPLICATION: The quality deterioration of meat may not only affect its further processing and consumption but also may lead to some food safety problems. In present study, PNE exhibited the fine capability to inhibit the oxidation of meat, while it could ameliorate the texture, color, and physicochemical properties of meat due to its tightly interaction with myofibrillar protein. All result suggested that PNE could be potentially utilized to improve the quality of meat in food industry.
Read full abstract