The current research proposed a method for optimally combining feed input ratios in order to improve the quantity and quality of daily biogas production through optimizing the variable response level in the Taguchi method. The anaerobic digestion (AD) process of an existing plant in Iran was simulated through a set of two-stage pilot reactors under mesophilic temperature conditions in order to achieve optimal operational performance. Three common substrates (organic fraction of municipal solid wastes, fruit and vegetable wastes, and horse manure) along with two recirculated materials; the post-digestion sludge and the secondary digester slurry, were investigated in 16 experimental runs based on four different pre-surface hypotheses. Comparison of the results of daily biogas energy (J/d/g-VS) in Run#9, to which the actual yield of hydrogen sulfide was minimal in parallel to a methane yield above 100 mL/g-VS, with the result of the optimal run with the ratios provided by the model, showed that the daily biogas energy was improved by 50% comparing to the control Run that had similar conditions to which was being applied in the full-scale existing AD plant.
Read full abstract