Abstract

Two nitrifying MBBR reactors were operated in parallel, one with PAC dosing and one without, to determine the effects of PAC dosing on nitrification and micropollutant adsorption in municipal wastewater. The removal of micropollutants was evaluated for several doses of PAC and batch experiments were performed to measure adsorption kinetics and nitrification rates. The influence of PAC on the nitrifying microbial community was examined by high-throughput amplicon sequencing. Long-term operation of the pilot reactors showed that nitrification could be maintained while supplying PAC at increasing doses, as confirmed by high nitrification rates and significant abundance of nitrifying bacteria. The adsorption of organic micropollutants could be controlled by the PAC dose, and increased dosing resulted in corresponding improvements in removal efficiency. Biomass, suspended or attached to carriers, did not interfere with the adsorption of organic micropollutants. Freundlich isotherms obtained from the batch experiments were used to predict removal of organic micropollutants in the pilot reactors, suggesting that batch adsorption experiments can be used to predict micropollutant removal on a full scale. Collectively, the results show that nitrification and adsorption of organic micropollutants can be performed simultaneously in an MBBR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.