AbstractShallow geothermal heat exchangers integrated in structural pile foundations have the capability of being an efficient and cost-effective solution to cater for the energy demand for heating and cooling of built structures. However, limited information is available on the effects of temperature on the geothermal energy pile load capacity. This paper discusses a field pile test aimed at assessing the impact of thermomechanical loads on the shaft capacity of a geothermal energy pile. The full-scale in situ geothermal energy pile equipped with ground loops for heating/cooling and multilevel Osterberg cells for static load testing was installed at Monash University, Melbourne, Australia in a sandy profile. Strain gauges, thermistors, and displacement transducers were also installed to study the behavior of the energy pile during the thermal and mechanical loading periods. It has been found that the pile shaft capacity increased after the pile was heated and returned to the initial capacity (i.e., initi...