Ultrasonic motors can be driven by burst voltage to obtain micro-stepping motion, and the corresponding step size depends on the load and cycle number of the applied ac driving voltage in one burst. The rotor of the motor achieves a step motion through a process of startup-acceleration-deceleration-stop. To obtain a large torque (or thrust force) and quick startup, a large vibration amplitude of a stator and a high growth rate are desired; thus, a large mechanical quality factor and a high electromechanical coupling factor are required. However, the stator vibration decays for a long time before it stops because of low mechanical energy loss; meanwhile, the rotor moves a big step. Hence, there is contradiction between thrust force and resolution/response time. This paper presents a new drive method to improve the step resolution and response time while keeping the torque by damping control. By simply adding a switch and a shunting damp circuit and connecting the shunting circuit to ultrasonic motors at the end of a drive burst signal, the stator vibration attenuates more rapidly and the step size is reduced. First, the damping effect of the piezoelectric system with a passive resonant shunting circuit (a resistor and an inductor connected in series) on the free stator of a bar-type rotary traveling wave ultrasonic motor has been tested. Next, a drive circuit comprising electronic switches and the shunting circuit is designed and utilized for measuring the performance of the motor. Experimental results have well proven the proposed method.