Abstract

The effective vibration mitigation properties of piezoceramic patches with inductive-resistive shunts are investigated experimentally. A shunt tuning method is proposed, in which a consistent correction for the influence from residual vibration modes is included by an effective modal capacitance, evaluated from measured charge and voltage amplitudes in short- and open-circuit conditions, respectively. The robustness of the proposed method is verified experimentally for both a free beam and a free plate structure with four shunted piezoceramic patch pairs. A stable and fully passive inductor is produced by winding a copper wire around a magnetic core, which requires precise inductance tuning to determine the final number of turns. It is demonstrated that the effective modal capacitance interpolates consistently between the blocked and static capacitances, commonly used for single-mode tuning of piezoelectric inductive-resistive shunts. By imposing pseudo-random vibrations, the piezoelectric current and voltage signals are measured and evaluated by their frequency response functions. Spectrum peak values determine the apparent short-circuit charge to open-circuit voltage ratio for each shunt, which directly determines the shunt components by explicit tuning formulas. Good correlation between numerical and experimental results are obtained for the free beam, while for the free plate experiment effective multi-mode shunt tuning is obtained by a modified effective electromechanical coupling coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.