We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur functions that naturally generalizes the Pieri rule for Schur functions. Nous étudions une nouvelle base des fonctions quasisymétriques, les fonctions de quasiSchur. Ces fonctions sont obtenues en spécialisant les fonctions de Macdonald dissymétrique. Nous décrivons les compositions que donne une simple fonction quasisymétriques. Nous décrivons aussi une règle par certaines fonctions de Schur.