Abstract

Finding a combinatorial rule for the multiplication of Schubert polynomials is a long standing problem. In this paper we give a combinatorial proof of the extended Pieri rule as conjectured by N. Bergeron and S. Billey, which says how to multiply a Schubert polynomial by a complete or elementary symmetric polynomial, and describe some observations in the direction of a general rule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.