Abstract
Motivated by the recent discovery of a simple quantization procedure for Schubert polynomials we study the expansion of Schur and Schubert polynomials into standard elementary monomials (SEM). The SEM expansion of Schur polynomials can be described algebraically by a simple variant of the Jacobi–Trudi formula and combinatorially by a rule based on posets of staircase box diagrams. These posets are seen to be rank symmetric and order isomorphic to certain principal order ideals in the Bruhat order of symmetric groups ranging between the full symmetric group and the respective maximal Boolean sublattice. We prove and conjecture extensions of these results for general Schubert polynomials. The featured conjectures are: (1) an interpretation of SEM expansions as “alternating approximations” and (2) surprising properties of different numbers naturally associated to SEM expansions. This hints at as yet undiscovered deeper symmetry properties of the SEM expansion of Schubert polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.