Abstract

Schur polynomials are special cases of Schubert polynomials, which in turn are special cases of dual characters of flagged Weyl modules. The principal specialization of Schur and Schubert polynomials has a long history, with Macdonald famously expressing the principal specialization of any Schubert polynomial in terms of reduced words. We prove a lower bound on the principal specialization of dual characters of flagged Weyl modules. Our result yields an alternative proof of a conjecture of Stanley about the principal specialization of Schubert polynomials, originally proved by Weigandt.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.