We present an alternative treatment for simple time-independent quantum systems in one dimension, which can be used in the context of an elementary introduction to quantum physics using the Feynman approach. The method is based on representation of the energy-dependent propagator (or Green function) as a sum of complex amplitudes over all possible paths, classical and non-classical, at fixed energy. We treat both confined and open systems with piecewise-constant potentials, obtaining exact results. We introduce an approximation scheme to extend the method to smooth potentials, recovering the Van Vleck-Gutzwiller propagator. Finally, we discuss the educational application of the method.
Read full abstract