The addition of calcium chloride to rat liver homogenates resulted in activation of phosphoenolpyruvate carboxykinase by as much as 50%. The enhanced activity was inhibited by quinolinic acid; it was not additive with activation by FeCl2, and stimulation was prevented by 1,10-phenanthroline. Activation by calcium was lost when the particulate fractions of liver were removed, but an activating system could be reconstituted with isolated mitochondria, purified P-enolpyruvate carboxykinase, and purified ferroactivator. Iron-loaded mitochondria were more responsive to calcium than controls. A release of Fe2+ from washed mitochondria could be detected spectrophotometrically when 25-75 nmol of Ca/mg of protein were added to the mitochondrial suspension. If Ca2+ was buffered with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, the threshold of Ca2+ necessary for release of Fe2+ was approximately 10(-7) M, with peak response between 5 X 10(-7) and 10(-6) M. Total Fe2+ detected was normally 20-30 pmol of Fe2+/mg of protein. The synthetic activator of P-enolpyruvate carboxykinase, 3-aminopicolinic acid, as well as other picolinic acid derivatives, is capable of withdrawing Fe2+ associated with the mitochondrial fraction; after incubation with mitochondria, 3-aminopicolinate will activate phosphoenolpyruvate carboxykinase in the absence of exogenous metal.
Read full abstract