Phytotoxins (PTs) are bioactive secondary metabolites produced by plants. More recently, they have been recognized as important aquatic micropollutants. Despite that, only a few PTs have been detected and reported in terrestrial and aquatic environments, while their source and leaching pathways remain largely unclear. Herein, we established a novel approach named source-supported suspect screening (4S) to discover PTs in different environments, investigate their environmental occurrences, identify their sources, and initiate discussions on their leaching mechanisms. The 4S-approach was demonstrated on a five-month Lupinus angustifolius L. (L. angustifolius) crop field experiment, where plant, topsoil, drainage water, and surface water were sampled and analyzed. As a result, 72 PTs (flavonoids and alkaloids) were identified at high confidence, with 10 PTs fully confirmed. Fifty-three PTs detected in soil or water were linked to L. angustifolius, among which 26 PTs were coherently detected in all three environmental compartments. The occurrence and abundance of PTs in terrestrial soil and aquatic environments were influenced by the plant growth stage and precipitation. Soil served as an intermedium when PTs leached from L. angustifolius to the drainage water, while the degree of retardation and eventual occurrence in the aquatic environment depended on both PTs and soil physico-chemical properties.
Read full abstract