The molecular science of erection physiology has established that phosphodiesterase 5 (PDE5) serves an important biological role in the penis. Current research in the field has revealed this molecular effector to be relevant for penile erection, controlling the erectile response by degrading the second messenger product of the erection mediatory nitric oxide (NO) signaling pathway, 3', 5'-cyclic guanosine monophosphate. Accordingly, PDE5 has been targeted for sexual medicine purposes, and orally administered PDE5 inhibitors such as sildenafil, tadalafil, and vardenafil comprise a foremost intervention for erectile dysfunction (ED). New investigation of PDE5 regulation in the penis has suggested alternative roles for the enzyme and new therapeutic opportunities involving its molecular interactions. In particular, PDE5 function is altered under derangements of androgen deficiency, decreased NO bioactivity, and oxidative stress-associated inflammatory changes, thus contributing to an assortment of erectile disorders including hypogonadism-associated ED, recurrent ischemic priapism, penile vasculopathy, and penile fibrosis. This review provides a critical examination of the multifaceted role of the PDE5 regulatory system in the penis and its relevance for applying existing and emerging therapeutic strategies for erectile disorders.