The development of Ballistic Protection Vests (BPVs) has gained significant attention, particularly focusing on the design of Ballistic Protection Soft Panels (BPSPs), which are crucial to the overall size and configuration of these vests. Despite their critical role, there is a noticeable lack of a standardized design method for surface area patterns of BPSPs in the existing literature. The findings indicate that the National Institute of Justice (NIJ) standard 0101.06 Ballistic Test Templates (BTTs) are only partially applicable to the design of BPSP patterns. While the NIJ standard 0101.06 provides a useful framework, it requires adaptation to meet the specific needs of regional body types and the practicalities of BPV manufacturing. This research aims to address this gap by assessing the suitability of NIJ BTTs for the design of BPSPs and BPVs and to develop a standardized pattern design methodology along with a method for calculating the surface area of the soft amour prior to its creation. Results have to be achieved ready for the production of BPSP patterns tailored to the body types of regional soldiers while adhering to relevant standards and soldier’s physical comfort, thereby saving time and resources for manufacturers and researchers. In this study, we evaluated the applicability of the NIJ standard 0101.06 BTT for configuring these templates into the cutting patterns of BPSPs. To achieve this, patterns for BPSPs were designed and the feasibility of using NIJ BTTs for their configuration was analyzed. The research process involved a comprehensive literature review, an analysis of the dimensions of existing BPV soft panels, and a comparison with NIJ standard 0101.06 BTT. The design and scaling of the panel patterns were executed using computer-aided design (CAD) systems and evaluated through both physical fitting on mannequins and virtual fitting using the Clo3D program. The developed pattern-making methodology includes size specifications tailored to regional covers, incorporating a coefficient K identified to calculate the BPSP surface area prior to design. This approach not only ensures better fitting for the physical comfort and protection of soldiers but also saves time and resources in the manufacturing process of BPSPs. The proposed design methodology offers a significant step forward in standardizing BPSP patterns, promising enhanced protection and efficiency in BPV manufacturing.