Utilization of the renewable resources in district heating systems can reduce the use of fossil fuels, operating costs and protect the environment. In this study, an integrated hybrid system consisting of concentrating photovoltaic/thermal collectors (PV/T), geothermal (GSHP) and absorption (AHP) heat pumps is considered for district heating. The thermodynamic performance of the system at various conditions is explored through detailed simulations. A modified thermo-ecological cost (TEC) method is used to optimize the structure of the PV/T by considering contributions of different flows. The results show that a higher solar irradiance level and a higher PV coverage ratio have a positive impact on the thermal performance of the hybrid system. The TEC-based optimization shows that a 66% PV coverage ratio of PV/T yields a minimum thermo-ecological heating cost of 6.86 J/J, which is slightly lower than cost with a conventional method. Based on the sensitivity analysis, other key parameters except the operating time and the PV coverage ratio have a negative influence on the economic performance of the district heating system, because of the increasing cumulative exergy consumption of the GSHP or PV/T.
Read full abstract