Optoelectronic oscillators (OEOs) have emerged as indispensable tools for generating low-phase-noise microwave and millimeter-wave signals, which are critical for a variety of high-performance applications. These include radar systems, satellite links, electronic warfare, and advanced instrumentation. The ability of OEOs to produce signals with exceptionally low phase noise makes them ideal for scenarios demanding high signal purity and stability. In radar systems, low-phase-noise signals enhance target detection accuracy and resolution, while, in communication networks, such signals enable higher data throughput and improved signal integrity over extended distances. Furthermore, OEOs play a pivotal role in precision instrumentation, where even minor noise can compromise the performance of sensitive equipment. This review examines the progress in OEO technology, transitioning from classical designs relying on long optical fiber delay lines to modern integrated systems that leverage photonic integration for compact, efficient, and tunable solutions. Key advancements, including classical setups, hybrid designs, and integrated configurations, are discussed, with a focus on their performance improvements in phase noise, side-mode suppression ratio (SMSR), and frequency tunability. A 20-GHz oscillation with an SMSR as high as 70 dB has been achieved using a classical dual-loop configuration. A 9.867-GHz frequency with a phase noise of −142.5 dBc/Hz @ 10 kHz offset has also been generated in a parity–time-symmetric OEO. Additionally, integrated OEOs based on silicon photonic microring resonators have achieved an ultra-wideband tunable frequency from 3 GHz to 42.5 GHz, with phase noise as low as −93 dBc/Hz at a 10 kHz offset. The challenges in achieving fully integrated OEOs, particularly concerning the stability and phase noise at higher frequencies, are also explored. This paper provides a comprehensive overview of the state of the art in OEO technology, highlighting future directions and potential applications.
Read full abstract