Abstract

Optical image encryption has long been an important concept in the fields of photonic network processing and communication. Here, we propose a convolution-like operation-based optical image encryption algorithm exploiting a silicon photonic multiplexing architecture to achieve content security. Particularly, the encryption process is completed in a 3 × 3 cross-shaped photonic micro-ring resonator (MRR) array on chip. For the first time, to the best of our knowledge, this algorithm encodes information in an integrated intensity modulation, effectively reducing the encoding difficulty. Moreover, the high reliability and scalability of optical encryption are ensured using both linear and nonlinear operations on photonic chips according to characteristics of MRRs. As the encryption and decryption experiments show, the image restoration accuracy of our optical encryption algorithm exceeds 99% under real system noise at the pixel level, indicating its noise-robust property. Meanwhile, the peak signal-to-noise ratios of the restored and encrypted images are >60 and <15 dB, respectively, revealing both the high accuracy of the restored image and the small correlation between the encrypted and original images. This work adds to the rapidly expanding field of optical image encryption on photonic chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.