The photoluminescence spectra and kinetics in powders and aqueous suspensions produced from porous silicon layers are studied. The systematic features of photosensitized generation of singlet oxygen by silicon nanocrystals in the samples are established. The dependence of the efficiency of generation of singlet oxygen on the pressure of molecular oxygen is analyzed. It is concluded that the generation can be described on the basis of concepts of energy transfer from photoexcited silicon nanocrystals to oxygen molecules adsorbed at the nanocrystal surface to the concentration described by Langmuir's adsorption model. The processes limiting the efficiency of photosensitized generation of singlet oxygen in the systems are discussed.
Read full abstract