Abstract

The photoluminescence spectra and kinetics in powders and aqueous suspensions produced from porous silicon layers are studied. The systematic features of photosensitized generation of singlet oxygen by silicon nanocrystals in the samples are established. The dependence of the efficiency of generation of singlet oxygen on the pressure of molecular oxygen is analyzed. It is concluded that the generation can be described on the basis of concepts of energy transfer from photoexcited silicon nanocrystals to oxygen molecules adsorbed at the nanocrystal surface to the concentration described by Langmuir's adsorption model. The processes limiting the efficiency of photosensitized generation of singlet oxygen in the systems are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.