MicroRNA (miRNA) is a new class of tumor biomarkers in human body for early diagnosis and therapy of cancers, whose detection has scientific significance and potential applications. Herein, a sensitive heterostructured BiVO4/CoPi photoelectrochemical (PEC) biosensor was established for sensing miRNA 141 with assistance of home-synthesized AuPt nanodendrites (NDs) as nanozyme. Specifically, the BiVO4/CoPi heterostructures displayed rough worm-like internetworks, as characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In parallel, the PEC and UV–vis diffuse reflectance spectroscopy tests confirmed their excellent optical property, combined by discussing the interfacial electron transfer mechanism. Additionally, the AuPt NDs displayed superior peroxidase-like property in the presence of H2O2 as identified by benchmarked tetramethylbenzidine (TMB) oxidation, coupled by showing remarkable catalysis for 3-amino-9-ethylcarbazole (AEC) oxidation to form biocatalytic precipitation (BCP). Integrated by a cyclic enzyme strategy, the developed PEC biosensor exhibited a wider linear range of 5 fM ∼1 pM and a lower limit of detection (LOD) as low as 0.17 fM (S/N = 3). This work provides some valuable insights for sensitive analysis of tumor-associated miRNA in clinic.