Creatinine and albumin are crucial biomarkers for health monitoring and their ratio in urine is an effective approach for albuminuria assessment. Herein, to address the challenges of point-of-care and efficient analysis of the biomarkers simultaneously, we developed a fully integrated handheld smartphone-based photoelectrochemical biosensing system. A miniaturized printed circuit board included a potentiostat for photocurrent measurements and single-wavelength light-emitting diodes (LEDs) for photo-excitation, which was controlled with a Bluetooth-enabled smartphone. Graphitic carbon nitride (g-C3N4)/chitosan nanocomposites were modified on a transparent indium tin oxide (ITO) electrode as photoactive materials. Creatinine was detected through chelate formation with copper ion probes, while albumin was recognized specifically by an antigen-antibody reaction based on immunoassay. The biosensing system demonstrated good linearity and high sensitivity, with detection ranges of 100 μg mL-1 to 1500 μg mL-1 for creatinine, and 9.9 μg mL-1 to 500 μg mL-1 for albumin. Spiked artificial urine samples with different concentrations were tested to confirm the practical validity of the biosensing system, where an acceptable recovery rate ranged from 98.7% to 105.3%. This portable photoelectrochemical biosensing platform provides a convenient and cost-effective method for biofluid analysis, which has an extensive prospect in point-of-care testing (POCT) for mobile health.