Abstract

A photoelectrochemical (PEC) biosensor was established for histone deacetylase Sirt1 detection based on the polyaspartic acid (PASP)-mediated redox cycling amplification and Sirt1 catalysis deacetylation-triggered recognition of the deacetylated substrate peptide, using PASP as the recognition reagent. After BiVO4 was composited with gold nanoparticles and SnS2, the photoactivity of the composite was greatly enhanced due to the matched energy band structure. Under the catalysis of Sirt1 enzyme, the acetylated substrate peptide was deacetylated to obtain a positive peptide, which was recognized by negative PASP. In addition to the recognition function, PASP also played other triple roles. First, PASP interacted with the positive peptide to form a double-stranded structure, which led to the electrode interface changing from irregular to regular, resulting in an improved PEC response. Second, PASP was involved into redox cycle amplification due to its reduction to dehydroascorbic acid. Further, it was used for repeated preparation of ascorbic acid to provide electron donors. This process enhanced the PEC response. Third, based on the matched energy band with BiVO4, PASP effectively improved the photoactivity of BiVO4. With multiplex signal amplification, the PEC biosensor showed a wide linear range (1.83-1830 pM) and high detection sensitivity with a low detection limit of 0.732 pM (S/N = 3). The applicability of this method was evaluated by studying the effects of a known inhibitor of nicotinamide and the heavy metal ions of Cd2+ and Pb2+ on Sirt1 enzyme activity, and the results showed that this method not only provided a new platform for screening Sirt1 enzyme inhibitors but also provided new biomarkers for evaluating the ecotoxicological effects of environmental pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call