Spectral singularities of the ampere–watt sensitivity of photoelectric structures consisting of a transparent indium–tin oxide electrode, a photosensitive organic layer, and an aluminum electrode have been studied. The structures have been formed on a quartz glass substrate. The photosensitive layer has been vacuum-evaporated either from zinc phthalocyanine ZnPc (exhibiting donor properties) and C70 fullerene (acceptor) organic precursors or from a ZnPc:Cr70 donor–acceptor blend. Using computer simulation, the structure of absorption bands has been determined in a wide spectral range for all three above systems. This has made it possible to calculate the absorbed and reflected fractions of radiation incident on the sample and explain the singular spectral behavior of the ampere–watt sensitivity of the ZnPc:C70 blend. It has been shown that the photosensitivity of the blend reaches a maximum near the overlap of the absorption bands of donor and acceptor molecules
Read full abstract