We report intrinsic photoconductivity studies on one of the least examinedlayered compounds, ZrS2.Few-atomic layer ZrS2 field-effect transistorswere fabricated on the Si/SiO2 substrate and photoconductivity measurements were performed using both two- and four-terminal configurationsunder the illumination of 532 nm laser source. We measured photocurrentas a function of the incident optical power at several source-drain (bias)voltages. We observe a significantly large photoconductivity when measured in the multiterminal (four-terminal) configuration compared to thatin the two-terminal configuration. For an incident optical power of 90nW, the estimated photosensitivity and the external quantum efficiency(EQE) measured in two-terminal configuration are 0.5 A/W and 120%,respectively, under a bias voltage of 650 mV. Under the same conditions,the four-terminal measurements result in much higher values for both thephotoresponsivity (R) and EQE to 6 A/W and 1400%, respectively. Thissignificant improvement in photoresponsivity and EQE in the four-terminal configuration may have been influenced by the reduction of contactresistance at the metal-semiconductor interface, which greatly impacts thecarrier mobility of low conducting materials. This suggests that photoconductivity measurements performed through the two-terminal configurationin previous studies on ZrS2 and other 2D materials have severely underestimated the true intrinsic properties of transition metal dichalcogenides andtheir remarkable potential for optoelectronic applications.
Read full abstract