Photocatalysis is a promising technology for efficient sewage treatment, and designing a reactor with a stable loading technique is crucial for achieving long-term stability. However, there is a need to improve the current state of the art in both reactor design and loading techniques to ensure reliable and efficient performance. In this study, we propose an innovative solution by employing polydimethylsiloxane as a bonding layer on a substrate of 3D-printed polyacrylic resin. By means of mechanical extrusion, the active layer interacts with the bonding layer, ensuring a stable loading of the active layer onto the substrate. Simultaneously, 3D printing technology is utilized to construct a photocatalytic reactor resembling a “Kongming Lantern”, guaranteeing both high activity and durability. The reactor exhibited remarkable performance in degrading organic dyes and eliminating microbes and displayed a satisfactory purification effect on real water samples. Most significantly, it maintained its catalytic activity even after 50 weeks of cyclic degradation. This study contributes to the development of improved photocatalysis technologies for long-term sewage treatment applications.
Read full abstract