Abstract

Tetracycline antibiotics have attracted attention due to their difficulty in being degraded by the natural environment. In this work, 2D/3D mesoporous graphitic carbon nitride (mpg-C3N4)/ zinc oxide (ZnO) hollow nanocage (MCNZH) complexes with Z-scheme heterostructure were prepared for the photocatalytic degradation of tetracycline antibiotics. The catalysts were characterized by SEM, TEM, BET, XRD, FT-IR, EIS, etc. The degradation of tetracycline hydrochloride (40 mg L–1) by MCNZH (1.2 g L–1) can reach 92.08 %. Further, the energy band structure of the catalysts were calculated and the possible degradation mechanism was proposed. The results showed that ·OH– and ·O2– were the main active species, and the internal electric field suppressed the compounding of photogenerated carriers. The catalysts exhibited broad-spectrum degradation of tetracycline antibiotics. Practical sample spiking experiments on soil and river water confirmed its practicability, which provide great significance for the application of the photocatalytic technology in the practical environmental purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.