Phosphorus (P) losses from agricultural systems are a cause of degraded surface water quality of lakes and streams. In freshwater systems, P is often the most limiting nutrient for algae growth and an increase in P additions to these systems can cause a shift in ecology. These shifts can result in a degradation of the water resource as habitat or for recreation. In an effort to combat the negative effects of agriculture management practices on surface water quality, federal and state regulations require some level of assessment to guide P applications. Areas with large amounts of potato production are of particular concern with respect to P loss since potatoes are a high P demanding crop and are inefficient users of applied P. In many cases, soils in potato production are managed with a higher soil test P concentration compared to other crops and P applications for optimum production exceed P removal. When potato production fields are maintained at high soil test P levels, this may increase the risk of P loss in runoff. However, based on soils and landscape positions where potatoes are grown, there may be little risk of transport. While there appears to be little risk of P loss on low-sloping, sandy soils, output from the Wisconsin Phosphorus Index suggests that more steeply sloping fields can pose some risk, especially when soil test P concentrations exist at above optimum levels. At high soil test P levels, no P may be required for optimum yield in rotated crops, but production practices of these crops may need to be altered to reduce P losses. Furrow-irrigated and tile-drained fields may also pose risks of P loss to the environment. While the P demands of potato are greater than those for most crops, it is likely that most of this P will not be exported via surface runoff. Careful management considerations must be made when producing potatoes on high sloping soils, especially those close to surface water bodies. Future considerations of P management and water quality will focus on assessing leaching risk of P and this contribution to surface waters.