Abstract
Summary Spatially distributed nonpoint source (NPS) pollution indices are used to identify areas in a watershed where potential pollutant loading coincides with runoff generating areas. However, most such indices either ignore the degree of hydrologic connectivity to the stream network or they estimate it based simply on the distance of the pollution generating area from an open channel. We propose an NPS pollution index based on runoff travel times from saturated variable source areas (VSAs) to the natural stream network as a means for including hydrologic connectivity between source areas and streams. Although this method could be generalized to any pollutant transported by storm runoff, here we focus on phosphorus and refer to the index as the travel-time phosphorus index (TTPI). The TTPI was applied to a 38 km2 agricultural watershed in central New York and shown to yield realistic, spatially explicit predictions of critical phosphorus loading areas and routing pathways. One interesting finding is the potential role of man-made drainage networks (e.g., road- or agricultural-ditches) in NPS pollution and the possibilities of targeting water quality protection practices around or within these networks. Because the technique is GIS-based, relatively simple to apply, uses readily available geospatial data, and the theoretical underpinnings are transparent, it can provide a useful screening tool for water resource managers charged with the identification and remediation of critical NPS pollution source areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.