Phosphonates such as ethylenediaminetetra (methylenephosphonic acid) (EDTMP) and aminotris (methylenephosphonic acid) (ATMP) are used every day in water treatment processes or in household products. Their consumption is still increasing, regardless of the debates on their environmental impact. Here, the microbial characterisation and determination of the biodegradation potential of selected industrially relevant phosphonates for the isolate Delftia sp. UMB14 is reported. The opportunistic strain was isolated from a biofilm that was derived from a conventional washing machine using conventional detergents containing phosphonates. In antimicrobial susceptibility testing, the strain was only susceptible to sulfonamide, tetracycline, and chloramphenicol. Physiological and biochemical characteristics were determined using the BIOLOG EcoPlate assay. Most importantly, the strain was shown to convert D-malic acid and D-mannitol, as confirmed for strains of Delftia lacustris, and thus the new isolate could be closely related. Biodegradation tests with different phosphonates showed that the strain preferentially degrades ATMP and EDTMP but does not degrade glyphosate (GS) and amino (methylphosphonic acid) (AMPA). A specific gene amplification confirmed the presence of phnX (phosphonoacetaldehyde hydrolase) and the absence of PhnJ (the gene for the core component of C-P lyase). The presence of PhnCDE is strongly suggested for the strain, as it is common in Delftia lacustris species.